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Synopsis

A model for the prediction of the elastic response of reinforced materials over wide ranges of
concentration is presented. The method is based on the mathematical analogy between the
motion of particies suspended in viscous media and the elastic deformation of solids. The system
is locally described by linearized forms of the elastic moduli. The validity of these relations is
then extended to all concentrations under the assumption that any new portion of filler “sees”
the existing structure as a noninteracting homogeneous matrix. The method predicts the behavior
of reinforced materiais with solid spherical inclusions and foams over wide ranges of concentra-
tion. The model, free from adjustable parameters, shows excellent agreement with existing
experimental data. The extension of the method to other inclusion geometries is straightforward.

INTRODUCTION

In the search of a mathematical model for the mechanical behavior of
heterogeneous systems, a complete analogy is found between the basic equa-
tions for elasticity theory and those for the motion of suspended particles in
viscous media. The analogy can be easily proved by writing the equations of
motion for an incompressible material in terms of displacements (Christensen’):

d%u;
+F=p 5 (1

—p;+ Gu; 4

where G is the shear modulus, u; is the displacement, F; is the body force, p
is the reactive pressure, and p is the density.

For comparison, the Navier-Stokes equations for an incompressible New-
tonian fluid are

=p;+t Y ;+ ek = P{a—t‘ + Uj”i.j) (2)
where 7 is the viscosity, v the velocity, and F the body force per unit mass.
Equations (1) and (2) have a term by term equivalence, with the exception of
the nonlinear component v;v; ; representing a convective acceleration. Under
creeping flow conditions, acceleration terms become irrelevant, and a complete
analogy can then be established. Given a certain geometry, the theoretical
equations for a viscous flow problem and those for the elastic deformation of a
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TABLE I
Models for Viscosity of Suspensions

Methodology
Geometric Linearized Extension to
model solutions at high conc
specified co dilution (Mooney,?
(Einstein®) Roscoe,*
Brinkman,?
Farris®)
Additional information on Weissberg and Prager’
random geometry of
suspension, particle
shape, ete.
Determination Minimum Hashin,?
of bounds entropy Prager®
production
TABLE 11
Models for the Prediction of the Elastic Response of Reinforced Materials
Methodology
Geometric Linearized Extension to
model solutions at high conc.
specified oo dilution {(Kerner,!
(Dewey*?) Van der Poel, '
Budiansky,!?
Roscoel*)
Additional information Hashin'®
on packing
arrangements
Determination Energy Voigt'®
of bounds theorems Paul?’
for elastic
moduli Variational Hashin and Shtrikman'®
methods

solid are of the same form; e.g., shear rate:viscosity; shear strain:shear
modulus. For a suspension of rigid particles in an incompressible matrix, there
is a simple relationship between relative viscosities and relative shear moduli
(relative to the unfilled matrix):

"/ Mm = G/Gp

Thus, if a theory for the viscosity of a filled system or suspension is available,
it can be used to estimate the shear moduius of an elastic system.

A second analogy can also be found in relation to the methods used in the
solution of both problems, as indicated in Tables I and II. In very general
terms, it is found that there is an important group of contributions based on
the establishment of an idealized geometry and packing arrangement (top of
Tables I and II). A second group is based on the determination of bounds,
which avoids (or reduces) the idealization problem by use of energy and
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variational techniques (bottom of Tables I and II). Typical limitations of
geometric models and bound methods gave origin to a third group of contribu-
tions containing elements of both techniques (middle of Tables I and II).

With regard to the problem of predicting the elastic performance of rein-
formced materials (Table IT), most of the models deal with specific idealized
geometries and packing arrangements. These theories provide relations be-
tween any two independent elastic constants among a shear modulus (G), a
bulk modulus (K') and a Young’s modulus (E):

K= K(Gm’ Km: Gi: Ki! C)
G= G(Gm: Kmv Giv Ki’ C)
where subindices m and i refer to the matrix and the inclusion and c is the
volume fraction of the inclusion. Smith'® noted that through algebraic manip-
ulation, most of these theories can be displayed in the form of a generalized
“rule of mixtures”:
G=G,+(G;,-G,)®=(1-®)G, + oG,

where ¢ takes different functional forms. According to the most familiar
contributions,

(8 - 10v,)G, + (7 - 5¥,)G,,
= B-10v)G. +(1-50)G, "

(approximate Van der Poel'%'?)

(8 - 10%,,)G + (7 - 5+,,)G,,
T (8-10r)G, + (7T -5v)G, "

(Kerner'!)

_ (8-100)G + (7= 5)G
T (B-100G, + (1 —59)G°

(Budiansky*?)

where G and » are the shear modulus and Poisson’s ratio of the composite.

All of the previous models developed by elastic analysis, i.e., deformation of
the matrix and inclusion, have a common feature: A specific idealized geome-
try and packing arrangement has to be assumed. In many reinforced materi-
als, this regularity in geometry does not exist, and the material cannot be
identified with any particular arrangement or ensemble valid throughout the
whole structure. Thus, the previous treatments, in the strictest sense, do not
truly represent a real reinforced system. One way to avoid this idealization
problem is through the use of variational techniques, which do not need to use
a precise geometric model.

The most elementary type of bounds can be calculated through the for-
malism of the complementary energy and strain energy theorems (Voigt'® and
Paul'?). However, the resulting bounds are often too far apart to be useful.

In order to improve these bounds, Hashin and Shtrikman'® formulated new
variational theorems on the basis of polarization tensors. However, limitations
in the applicability of bounds still persist. In general, it is not known if the
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calculated bounds are indeed the most restrictive, and the problem becomes a
trade-off between the amount of information introduced in the formulation,
and the resulting contiguity of the bounds.

As a rule, it may be said that the usefulness of bounds is restricted to
systems where the properties of the phases are similar, i.e., metal alloys. In
polymer reinforcement, however, the differences between matrix and inclusion
may be considerable. As a consequence, the upper and lower bounds tend to
separate, making this technique inadequate for any predictive purpose.

PROCEDURE

As indicated earlier, a basic problem in the theory of viscosity of suspen-
sions is the determination of correlations useful at high concentrations. Most
of the contributions are based on extensions of Einstein’s law of viscosity at
infinite dilution.

The analogous problem of correlating the elastic properties of heteroge-
neous systems over wide ranges of concentration has not been successfully
solved. As will be discussed later, predictions according to different theories
show a considerabie lack of agreement.

The proposed model is based on a differential scheme similar to that used
by Brinkman® and Roscoe* for the prediction of the viscosity of suspensions
at high concentrations. In a later publication, Roscoe'* tried to extend the
method to the prediction of elastic properties of reinforced materials.
McLaughlin®® presented a similar differential scheme and evaluated its esti-
mates in relation to the Hashin-Shtrikman bounds.

The present model is based on the calculation by elastic analysis of any two
independent parameters for the filled system, namely, the shear modulus, the
bulk modulus, or the Young’s modulus. Calculations may proceed as follows®:

1. describe the deformation state (simple shear, etc.),

2. choose adequate coordinates for a given geometry,

3. state the deformation equations for matrix and inclusion,

4, state continuity of stress at the interface,

5. reduce volume integrals to surface integrals by Eshelby’s formula,’

6. integrate.

For spherical inclusions and dilute conditions, the shear modulus takes the
form

G 15(1 - »,) (1 - (G/G,))
'c';';‘l'7—5ym+2(4—5vm)G/G,,,C—l+fc (3)
and the bulk modulus is
AT (- Sy ara rvocn) KRR A

where ¢ denotes the volume fraction and the subindices m and i refer to the
matrix and the inclusion.
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For an infinitely rigid inclusion (G; = o) in an incompressible matrix
(7, = 0.5), eq. (3) results in a relation similar to Einstein’s law of viscosity:

G
= — =1+ 25¢ (5)

Consider a suspension containing a smail concentration (volume) ¢, of
spheres into which is placed a small concentration c, of spheres, and into this
again a small concentration c, of spheres, and so on, up to n sets of spheres,
and let the total concentration be ¢. Then on adding another set of spheres of
concentration (volume fraction) c,,,, the new total concentration (volume
fraction) is

c(l—cppy) + Coss (6)

So the increase in concentration is
AC = Cgnal — Cinitial = Cns1(l — €) (7)
If the o;iginal suspension is considered a homogeneous medium (matrix)

around the new spheres which are in small concentrations, it is possible to
express the increment in shear modulus according to eg. (3) as

— =1+ fensn (8)

Defining
AG =G, -G,
and replacing c, ., according to eq. (7),
AG/G = fc,., = fAc/(1 - ¢)

For infinitely small increments in concentration,

Ac - de
AG - dG
and
aG Gf
& (1-¢) ®

This differential expression for the increment in concentration can now be
used in eq. (3). After following a similar reasoning for the bulk moduius K,
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egs. (3) and (4) become

dG G15(1 - ») (1 - G/G)
EZ=[7—w+2@—5ﬁG/GM1~d (10)
g (Ki - K) (11)

de 1+ ((K.-K)/[K+@4/3)G]})1-c)

where » = (3K — 2G)/2(3K + G) is the Poisson’s ratio.
Equsations (10) and (11) constitute a coupled system to be numerically
integrated with the following boundary conditions:

c¢=0, G =G, (matrix properties)
K=K,
(12)
c=1, G =G, (inclusion properties)

K=K,

RESULTS

Solid Inclusions

Smith!® compared the behavior of well-known models for the prediction of
the mechanical response of reinforced materials, i.e., Van der Poel,’? Kerner,!
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Fig. 1(a). Relative shear modulus vs. volume fraction of filler for G,/G, = 30, »; = 0.25,
v, = 0.4 (from Smith'®); (——) model performance; (---) predictions with different modeis: (1)
approximate Van der Poel'?; (2) Kerner or Hashin'and Shtrikman highest lower bound'?; (3)
corrected Van der Poel'?; (4) Budiansky.!®
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VOLUME FRACTION

Fig. 1{b). Relative shear modulus versus volume fraction of filler for G,/G,, = 70,000, », = 0.25,
¥ = 0.5 from Smith*%: (—) model performance; (---) predictions with different models: (1)
approximate Van der Poel'?; (2) Hashin and Shtrikman highest lower bound'®; (3) corrected
Van der Poel'?; (4) Budiansky.!?

Budiansky,® etc. In order to test the performance of the present model, the
same parameter values were used in the simulation. Data in Figure 1(a) have
been calculated with a shear modulus ratio G,/G,, = 30 and Poisson’s ratios
y; = 025 and »,, = 0.40, representing the case of glass spheres embedded in an
epoxy matrix.

Figure 1(b) has been.calculated with G,/G,, = 70,000, »; = 0.25, », = 0.5,
representing the expected shear properties of glass spheres embedded in a
lightly vulcanized matrix of natural rubber.

In both cases, a considerable discrepancy among the different models is
observed. The inconveniency of bounds calculated according to Hashin and
Shtrikman'® is also stressed. The predictions of the present simulation are
close to those of Van der Poel.!?

Richard?' presented experimental data for elastic modulus and Poisson’s
ratio of a polyester matrix reinforced with glass spheres (G, = 5.94 X 108 Pa,
v,, = 045, G; = 2.90 X 10'° Pa, », = 0.21). This author compared his experi-
ments with the predictions of several theories. Figure 2 indicates the excellent
prediction of the present model, while theories by Kerner!! and Hill?>? only
perform well at filler concentrations below 20 vol %.

Richard’s data® were also used by Smith!® for comparison with other
theoretical contributions as indicated in Figure 3(a) for relative moduli, and
Figure 3(b) for Poisson’s ratio. Calculations were performed with G,, = 5.84 X
108 Pa, v, = 0.44, G, = 2.90 X 10* Pa, and »; = 0.21.

Smith** compared his own experimental findings on epoxy resin—glass
spheres systems with several theoretical predictions. The properties of matrix
and inclusion are E,, = 2.68 X 10° Pa, »,, = 0.394, E; = 7.6 X 10*° Pa, »; =
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Fig. 2. Elastic modulus vs. volume fraction of filler for the case of glass beads in a polyester
matrix. Experimental data from Richard®: (—) model performance; (- - -) predictions according
to: (1) isostrain; (2) isostress; (3) Kerner'!; (4) Hill. %2

0.23. Results from those predictions are plotted and compared to the present
model in Figure 4.

Foams

Equations (10) and (11) have been integrated for the case of a foam by
assuming negligible moduli for the inclusion,

G,~ 0
K,—0

The simulation was compared with the experimental results of Gent and
Thomas® for a vulcanized rubber foam (E,, = 2.59 X 10 Pa, », = 0.49).
Figure 5 shows excellent agreement in the prediction of relative modulus vs.
relative density §,

6 = 8toam/ Orubber =1 — € (13)

where c is, as before, the volume fraction of the inclusion.

The performance of the model in the prediction of foam properties was also
tested with the experimental work of Moore et al.?® for a variety of foamed
thermoplastics (PVC, polypropylene copolymer, styrene-acrylonitrile copoly-
mer, etc.). These authors observed that plots of relative modulus (relative to
the solid matrix) vs. relative densities (§) could be correlated with a single
curve in shear, tension, and compression according to

E; o density of foam |2 2 2
=[ } =(8)=Q1-¢) (14)

E_ 4 density of solid
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Fig. 3. Relative Young’s modulus E/E , (3a) and Poisson’s ratio (3b) vs. volume fraction of
filler for the case of giass beads in a polyester matrix. Experimental data from Richard?': (——)
model performance; (---) predictions with different models: (1) Hashin and Shtrikman highest
lower bound!®; (2) Hashin and Shtrikman least upper bound!?; (3) Van der Poel'?; (4) Budiansky.*?
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Fig. 4. Relative Young’s modulus E/E, vs. volume fraction of filler for the case of giass
spheres in an epoxy matrix. Experimental data by Smith?*: (—) model performance; (---)
predictions with models by: (1) Hashin and Shtrikman highest lower bound!8; (2) Hashin and
Shtrikman least upper bound'®; (3) Van der Poei'?; (4) Budiansky.'?
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Fig. 5. Young's modulus of a highly vulcanized rubber foam E, relative to the solid rubber E,,
vs. volume fraction of rubber in the foam: (——) model performance. Experimental points were
determined by Gent and Thomas.?
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Fig. 6. Relative moduli of foams vs. relative densities. Calculations here have been performed
for the thermoplastics described by Moore et al.?8: (—) model performance for: (1) Young’s
modulus; (2) shear modulus; (---) predictions according to different models: (3) Kerner!'!; (4)
square-in-square model”’; (5) cube-in-cube model?’; (6) law of mixtures. Moore et al.?é correlated
experimental moduli with a square law which results coincident with curve 1 (model prediction).

Figure 6 compares the predictions of several theories with the empirical
findings of Moore et al.? and the results of the present model. Simulations
were performed for a polypropylene copolymer characterized by E, = 1.13
GPa, »,, = 0.41. Again, the proposed method shows total agreement with the
experimental values.
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Fig. 7. Relative modulus of acrylonitrile-butadiene-styrene (ABS) copolymer vs. volume
fraction of polybutadiene. Experimental data by Holliday and Mann®®: (——) model performance;
(---) predictions with different models: (1) Van der Poei!?; (2) parallel; (3) Kemer!l; (4)
Reiner—Hashin®; (5) series.

Low Modulus Incompressible Inclusions (Rubbers)

For the limiting case of an incompressible matrix (»,, = 0.5) with G; = 0, eq.
(10) admits an analytical solution as

G/G, = (1 -c)”? (15)

which represents the behavior of rubber modified polymers.

Holliday and Mann® compared several theories for a case representing soft
spheres in a rigid matrix (Fig. 7). The experimental data correspond to
acrylonitrile-butadiene—styrene (ABS) polymers, which consist of a disper-
sion of soft polybutadiene rubber spheres in a styrene-acrylonitrile (SAN)
copolymer matrix, which has a relatively high modulus.

The different available theories examined are not in good agreement, as
compared in Figure 7. The proposed model was tested with typical values for
styrene-acrylonitrile copolymer (SAN) (E,, = 3.1 X 1073 MPa, », = 0.38),%
and E,/E, = 0. Resuits presented in Figure 7 indicate good prediction of the
experiments.

CONCLUSIONS

Despite many contributions, the problem of predicting the elastic behavior
of reinforced materials over wide ranges of concentration has not been
satisfactorily solved.

Different theories based on well-defined geometric models present a consid-
erable divergence of results. The use of bound methods has been proven
inadequate for problems in polymer reinforcement, where solutions become a
trade-off between the contiguity of the bounds and the amount of information
(complexity) introduced in the model.

In the present work, a correct linearized relation for the elastic deformation
of matrix and inclusion is assumed at each concentration. This relation, which
is valid locally, can then be extended to all concentrations under the assump-
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tion that any new portion of filler “sees” the existing structure as a noninter-
acting homogeneous matrix.

The model, presenting no adjustable parameters, accurately represents
available experimental data on solid spherical inclusions and foams. The
method can be readily extended to other geometries for the inclusion.

This work was supported by a grant from the U.S. Navy (N00014-83-K-0083).
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