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synopsis 

A model for the prediction of the elastic response of reinforced materialo over wide ranges of 
concentration is presented. The method is based on the mathematical analogy between the 
motion of particles suspended in viacoue media and the elastic deformation of solids. The system 
is locally deaaibed by linearized forms of the &tic moduli. The validity of these relations is 
then extended to all concentrations under the assumption that any new portion of filler “sees” 
the &thg structure 88 a noninteracting homogenmus matrix. The method predicts the behavior 
of reinforced materials with solid spherical inclusions and foams over wide ranges of concentra- 
tion. The model, free from adjustable parameters, shows excellent agreement with ensting 
experimmtal data The &on of the method to other inclusion geometries is straightforward. 

INTRODUCTION 
In the search of a mathematical model for the mechanical behavior of 

heterogeneous systems, a complete analogy is found between the basic equa- 
tions for elasticity theory and those for the motion of suspended particles in 
viscous media. The analogy can be easily proved by writing the equations of 
motion for an incompressible material in terms of displacements (Chnstensed): 

where G is the shear modulus, u, is the displacement, F, is the body force, p 
is the reactive pressure, and p is the density. 

For comparison, the Navier-Stokes equations for an incompressible New- 
tonian fluid are 

where 9 is the viscosity, u the velocity, and F the body force per unit mass. 
Eguations (1) and (2) have a term by term equivalence, with the exception of 
the nonlinear component ujui,, representing a convective acceleration. Under 
creeping flow conditions, acceleration terms become irrelevant, and a complete 
analogy can then be established. Given a certain geometry, the theoretical 
equations for a viscous flow problem and those for the elastic deformation of a 
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TABLE I 
Models for Viscdty of Suspensions 

Methodology 

Geometric 
model 
specified 

Additional information on 
random geometry of 
su@ension, particle 
shape, etc. 

Determination 
of bounds 

Einearized Eaension to 
solutions at high cone 
w dilution (M~oney,~ 
(Einstein2) Roscoe,' 

Farrise) 
Brinkmaq5 

Minimum 
atropy 
production 

Weisaberg and Rager' 

Hashin,' 
Prager' 

TABLE I1 
Models for the prediction of the Elastic Response of Reinforced Materials 

Methodology 

Geometric 
model 
SpeCifid 

Additionai information 
on packing 
arrangements 

Determination 
of bounds 
for elastic 
moduli 

Linearized 
solutions at 
m dilution 
(Dewey'') 

Enern 
theorems 

Variational 
methods 

Extension to 
high conc. 

Van der Peel'* 
Budian~ky,'~ 

(KelTler,'~ 

ROscoe'4) 

Hashin15 

Voigt" 
Pad" 

Hashin and Shtrikman" 

solid are of the same form; e.g., shear rate:viscosity; shear strain:shear 
modulus. For a suspension of rigid particles in an incompressible matrix, there 
is a simple relationship between relative viscosities and relative shear moduli 
(relative to the d l l e d  matrix): 

Thus, if a theory for the viscosity of a filled system or suspension is available, 
it can be used to estimate the shear modulus of an elastic system. 

A second analogy can also be found in relation to the methods used in the 
solution of both problems, as indicated in Tables I and 11. In very general 
terms, it is found that there is an important group of contributions based on 
the establishment of an idealized geometry and packing arrangement (top of 
Tables I and 11). A second group is based on the determination of bounds, 
which avoids (or reduces) the idealization problem by use of energy and 
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variational techniques (bottom of Tables I and II). Typical limitations of 
geometric models and bound methods gave origin to a third group of contribu- 
tions containing elements of both techniques (middle of Tables I and II). 
With regard to the problem of predicting the elastic performance of rein- 

formced materiala (Table II), most of the models deal with specific idealized 
geometries and packing arrangements. These theories provide relations be- 
tween any two independent elastic constants among a shear modulus (G), a 
bulk modulus (K) and a Young's modulus (E): 

K = K(G,, K,, Gi, K,, c )  

where subindices m and i refer to the matrix and the inclusion and c is the 
volume fraction of the inclusion. SmitH9 noted that through algebraic manip- 
ulation, most of these theories can be displayed in the form of a generalized 
''rule of mixtures . 3). 

G =: G, + (Gi - G,)9 = (1 - @)G, + @Gi 

where 9 takes different functional forms. According to the most familiar 
contributions, 

(8 - lOv,)G, + (7 - 5v,,,)G, 
(8 - 10v,)Gi + (7 - ~u,)G, 

@ =  c (approximate Van der P ~ e l ' ~ ~ ' ~ )  

(8 - lOv,)G + (7 - 5v,)G, 
(8 - 10~. , )Gi  + (7 - 5v,,,)G, 

9 =  c (Kernerl') 

(8 - 1 0 ~ ) G  + (7 - 5v)G 
(8 - 10v)Gi + (7 - 5v)G 

9 =  c (B~diansky'~) 

where G and v are the shear modulus and Poisson's ratio of the composite. 
All of the previous models developed by elastic analysis, i.e., deformation of 

the matrix and inclusion, have a common feature: A s p e d c  idealized geome- 
try and packing arrangement has to be assumed. In many reinforced materi- 
als, this regularity in geometry does not exist, and the material cannot be 
identified with any particular arrangement or ensemble valid throughout the 
whole strudure. Thus, the previous treatments, in the strictest sense, do not 
truly represent a real reinforced system. One way to avoid this idealization 
pmbiem is through the use of variational techniques, which do not need to use 
a precise geometric model. 

The most elementary type of bounds can be calculated through the for- 
malism of the complementary energy and strain energy theorem (Voigt" and 
Paul"). However, the resulting bounds are often too far apart to be useful. 

In order to improve these bounds, Haahin and Shtr&mad8 formulated new 
variational theorems on the basis of polarization tensors. However, limitations 
in the applicability of bounds st i l l  persist. In general, it is not known if the 
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calculated bounds are indeed the most restrictive, and the problem becomes a 
trade-off between the amount of information introduced in the formulation, 
and the resulting contiguity of the bounds. 
h a rule, it may be said that the usefulness of bounds is restricted to 

systems where the properties of the phases are similar, i.e., metal alloys. In 
polymer reinforcement, however, the differences between matrix and inclusion 
may be considerable. As a consequence, the upper and lower bounds tend to 
separate, making this technique inadequate for any predictive purpose. 

PROCEDURE 
As indicated earlier, a basic problem in the theory of viscosity of suspen- 

sions is the determination of correlations useful at high concentrations. Most 
of the contributions are based on extensions of Einstein's law of viscosity at 
infinite dilution. 

The analogous problem of correlating the elastic properties of heteroge- 
neous systems over wide ranges of concentration has not been successfully 
solved. As will be discussed later, predictions according to different theories 
show a considerable lack of agreement. 

The proposed model is based on a differential scheme similar to that used 
by Brinkman5 and Roscoe4 for the prediction of the viscosity of suspensions 
at  high concentrations. In a later publication, Roscoe14 tried to extend the 
method to the prediction of elastic properties of reinforced materials. 
McLaughlin2* presented a similar differential scheme and evaluated its esti- 
mates in relation to the Hashin-Shtrikman bounds. 

The present model is based on the calculation by elastic analysis of any two 
independent parameters for the filled system, namely, the shear modulus, the 
bulk modulus, or the Young's modulus. Calculations may proceed as follows': 
1. describe the deformation state (simple shear, etc.), 
2. choose adequate coordinates for a given geometry, 
3. state the deformation equations for matrix and inclusion, 
4. state continuity of stress at  the interface, 
5. reduce volume integrals to surface integrals by Eshelby's formda,l 
6. integrate. 

For spherical inclusions and dilute conditions, the shear modulus takes the 
f o m  

and the bulk modulus is 

where c denotes the volume fraction and the subindices m and i refer to the 
matrix and the inclusion. 
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For an infinitely rigid inclusion (Gi + co) in an incompressible matrix 
(v, = 0.5), eq. (3) results in a relation similar to Einstein's law of viscosity: 

Consider a suspension containing a small  concentration (volume) c1 of 
spheres into which is placed a small concentration c2 of spheres, and into this 
again a small concentration c3 of spheres, and 50 on, up to n sets of spheres, 
and let the totai concentration be c. Then on adding another set of spheres of 
concentration (volume fraction) c , + ~ ,  the new total concentration (volume 
fraction) is 

So the increase in concentration is 

. 
If the original suspenrdon is considered a homogeneous medium (matrix) 
around the new spheres which are in small concentrations, it is possible to 
express the increment in shear modulus according to eq. (3) as 

Defining 

AG = G,+l - G, 

and replacing c , , ~  according to eq. (9, 

AG/G = f ~ , + ~  fAc/(l - C)  

For in6nitely amdl incremenb in concentration, 

AG +dG 

and 

dG Gf 
dc (1 - c )  
-31- (9 )  

This Mezential expression for the increment in concentration can now be 
used in eq. (3). After following a similar reasoning for the bulk modulus K, 
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eqs. (3) and (4)  become 

dG 
dc 

G15(1 - V )  (1 - G J G )  
[7 - 5~ + 2(4 - Bv)GJG](I  - C )  

(10) 

( 1 1 )  

- =  

ax ( K ,  - K )  
dc 
- =  

(1 + {(K, - K ) / [ K  + (4/3)GI 1) (1 - C )  

where v = (3K - 2G)/2(3K + G) is the Poisson's ratio. 

integrated with the following boundary conditions: 
Equatioq (10) and (11) constitute a coupled system to be numerically 

c=O, G = G, (matrixproperties) 

K = K ,  

c= 1 G = Gi (inclusion properties) 

K = K i  

RESULTS 

Solid Inclusions 
Smi&' compared the behavior of well-known models for the prediction of 

the mechanical response of reinforced materials, i.e., Van der Peel,'* Kerner," 

11 I 

VOLUME FRACTION 

Fig. l(a). Relative ahear modulus v6. volume fraction of 6ller for C,/G,,, - 30, Y, = 025. 
vm = 0.4 (from S ~ n i * ~ ) :  (-) model pmformance; (---) predictions with different models: (1) 
approximate Van der Poe1'2; (2) Kemer or Hashin'and Shtrikmau highest lower bound"; (3) 
corrected Van der Poel12; (4) B~disnsky.'~ 
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8 

VOLUME FRACTION 

Fig. l(b). Relative shear modulus versus volume fraction of filler for Gi/G, = 70,000, vi = 0.25, 
vm - 0.5 from Smith'': (-1 modd performance; ( - - - )  predictions with different models: (1) 
approximate Van der PoelI2; (2) Hsshin and Shtrikman highest lower bound"; (3) corrected 
Van der (4) B~diansky.'~ 

B~diansky, '~ etc. In order to test the p e r f o m c e  of the present model, the 
same parameter values were used in the simulation. Data in Figure l(a) have 
been calculated with a shear modulus ratio GJG, = 30 and Poisson's ratios 
v i  = 0.25 and vm = 0.40, representing the case of glass spheres embedded in an 
epoxy matrix. 
Figure l(b) has been.calculated with GJG, = 70,000, v i  = 0.25, v, = 0.5, 

representing the expected shear properties of glass spheres embedded in a 
lightly vulcanized matrix of natural rubber. 

In both cases, a considerable discrepancy among the different models is 
observed. The inconveniency of bounds calculated according to Hashin and 
ShtrikmadS is also stressed. The predictions of the present simulation are 
close to those of Van der Poel.l2 
Richard21 presented experhentai data for elastic modulus and Poisson's 

ratio of a polyester matrix reinforced with glass spheres (G, = 5.94 x 108 Pa, 
vm = 0.45, Gi = 2.90 x 1O'O Pa, vi = 0.21). This author compared his experi- 
ments with the predictions of several theories. Figure 2 indicates the excellent 
prediction of the present model, while theories by Kerner" and HillaB only 
perform well at filler concentrations below 20 ~ 0 1 % .  
Richard's dataz1 were also used by S m W g  for comparison with other 

theoretical contributions as indicated in Figure 3(a) for relative moduli, and 
Figure 3(b) for Poisson's ratio. Calculations were performed with G, = 5.84 x 
10' Pa, vm = 0.44, Gi = 2.90 x 10" Pa, and v i  = 0.21. 

Smithu compared his own experimental hdings on epoxy resin-glanS 
spheres systems with several theoretical predictions. The properties of matrix 
and inclusion are E ,  = 2.68 X lo9 Pa, v,,, = 0.394, E, = 7.6 X 10" Pa, vi = 
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VOLUME FRACTION OF FILLER 
Fig. 2. Elastic modulus vs. volume fraction of filler for the caee of glass beach in a polyester 

matrix. Experimental data from Richard2’: (-) model performance; (- - -) predictions according 
to: (1) isastrain; (2) isoeeess; (3) Kemer”; (4) Hill.p23 

0.23. Results from those predictions are plotted and compared to the present 
model in Figure 4. 

Foams 

Equations (10) and (11) have been integrated for the case of a foam by 
asrmming negligible moduli for the inclusion, 

G ,  4 0 

K ,  4 0 

The simulation was compared with the experimental results of Gent and 
Thomasz for a vulcanized rubber foam (Em = 2.59 X lo6 Pa, vm = 0.49). 
Figure 5 shows excellent agreement in the prediction of relative modulus vs. 
relative density 6, 

6 = Gfoam/Smbber = 1 - c (13) 

where c is, as before, the volume fraction of the inclusion. 
T h e  performance of the model in the prediction of foam properties was also 

tested with the experimental work of Moore et al.26 for a variety of foamed 
thermoplastics (PVC, polypropylene copolymer, styrene-acrylonitrile copoly- 
mer, etc.). These authors observed that plots of relative modulus (relative to 
the solid matrix) vs. relative densities (6)  could be correlated with a single 
cuwe in shear, tension, and compression according to 

E,, densityof foam 
= = (1 - c y  - = [  Emlid density of solid 1 
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VOLUME FRACTION OF FILLER 

VOLUME FRACTION OF FILLER 

Fig. 3. Relative Young's modulus E/E,  (3a) and Poisson's ratio (3b) vs. volume fraction of 
filler for the cane of g b a  beads in a polyester matrix. Experimental data from Richard*l: (-) 
model performance; (---) predictions with Merent models: (1) Hashin and S h t r i h  highest 
lower boundi8; (2) Hashin and Shtrikman least upper bound'8; (3) Van der PoeIL2; (4) Budiansk~.'~ 

E 
W 

W 
. 

VOLUME FRACTION OF FILLER 

Relative Young's modulus E/E,,, v s  volume fraction of filler for the case of glass 
spheres in an epoxy matrix. Experimental data by Smith? (-) model performance; ( - - - )  
predictions with models by: (1) Haahin and Shtrikman highest lower bound'8; (2) Hashin and 
Shtrikman least upper boundI8; (3) Van der PoelL2; (4) B~diansky.'~ 

Fig. 4. 
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Rg. 5. Young's modulus of a highly vulcanized rubber foam E, relative to the solid rubber Em 
vs. volume fraction of rubber in the foam: (-) model performance. Ekperimental points were 
determined by Gent and Thomas.2s 

a8- 
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RELATIVE DENSITY ( 1  - C I 

Fig. 6. Relative moduli of foams v6 relative densities. Calculations here have been performed 
for the thermoplastics desaibed by Moore et d.? (-) model performance for: (1) Young's 
moduIus; (2) shear modulus; (---) predictions according to different models: (3) Kemer"; (4) 
square-in-square modeln; (5) cube-in-cube modeln; (6) law of mixtures. Moore et aLZs correlated 
experimental moduli with a square law which results coincident with curve 1 (model prediction). 

Figure 6 compares the predictions of several theories with the empirical 
findings of Moore et al.26 and the results of the present model. Simulations 
were performed for a polypropylene copolymer characterized by Em = 1.13 
GPa, vm = 0.41. Again, the proposed method shows total agreement with the 
experimental values. 
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W \ '- 4 a -. I I I 1 

0.0 ai 0.2 oa Or) as 
VOLUME FRACTION OF POLYBUTADIENE 

Fig. 7. Relative modutus of acrylonitde-butadime-stwe (ABS) copolymer va. volume 
fraction of polybutadiare. Expanmental data by Holliday and Man@: (-) model performance; 
(---) predictions with diffarent models. (1) Van der PoelU; (2) parallel; (3) Kemer"; (4) 
Reiner-Heehinzg; (5) sraipa 

Low Modulus Incompressible Inclusiona (Rubbers) 

For the limiting case of an incompressible matrix (v,,, = 0.5) with Gi = 0, eq. 
(10) admits an analytical solution as 

G/G,,, =i (1 - c ) ~ ' ~  (15) 

which represents the behavior of rubber modified polymers. 
Holliday and MannB compared several theories for a case representing soft 

spherea in a rigid matrix (Fig. 7). The experimental data correspond to 
acrylonitrile-butadiene-styrene (ABS) polymers, which consist of a disper- 
sion of soft polybutadiene rubber spheres in a styrene-acrylonitde (SAN) 
copolymer matrix, which has a relatively high modulus. 
The different available theories examined are not in good agreement, as 

compared in Figure 7. The proposed model was tested with typical values for 
styrene-awlonitrile copolymer @AN) ( E m  = 3.1 x MPa, Y, = 0.38),30 
and E J E ,  = 0. Results presented in Figure 7 indicate good prediction of the 
experiments. 

CONCLUSIONS 
Despite many contributions, the problem of predicting the elastic behavior 

of reinforced materials over wide ranges of concentration has not been 
satisfactorily solved. 

Different theories based on well-dehed geometric models present a consid- 
erable divergence of results. The use of bound methods has been proven 
inadequate for problems in polymer reinforcement, where solutions become a 
trade-off between the contiguity of the bounds and the amount of information 
(complexity) introduced in the model. 

In the preeent work, a correct linearized relation for the elastic deformation 
of matrix and inclueion is assumed at each concentration. This relation, which 
is valid locally, can then be extended to all concentrations under the assump- 
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tion that any new portion of filler “sees” the existing structure as a noninter- 
acting homogeneous matrix. 

The model, presenting no adjustable parameters, accurately represents 
available experimental data on solid spherical inclusions and foams. T h e  
method can be readily extended to other geometries for the inclusion. 

This work was supported by a grant from the US. Navy (N00014-83-K-0083). 
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